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Abstract—Functional testing stands as a pivotal quality control
step in the production process of laptop motherboards, aiming to
validate the proper functioning of various components. However,
due to the multitude of functional modules involved on the moth-
erboard, testing all of them requires a significant amount of time
and resources. As a result, production line engineers often rely
on empirical selection of modules with low yield rates for testing.
However, such empirical yield estimation is often inaccurate. To
address this challenge, this study proposes a hybrid model based
on XGBoost and Long Short-Term Memory (LSTM) networks
to predict the yield of each functional module. By harnessing
the feature learning capability of XGBoost and the sequential
modeling power of LSTM, this model efficiently explores the
intricate correlations among motherboard functional modules,
thereby accurately forecasting their yields. We extensively train
and validate the model using historical production data and
successfully deploy it on real laptop motherboard production
lines. Experimental results demonstrate that our hybrid model
accurately predicts the yield of each functional module, providing
crucial guidance for the functional testing process. Through
in-depth analysis of the predicted yield results, engineers can
systematically choose testing projects to save time and resources.
This research offers a novel approach and pathway for enhancing
motherboard production efficiency and quality.

Index Terms—Functional testing, Laptop motherboard manu-
facturing, Time series prediction

I. INTRODUCTION

Functional testing represents a pivotal aspect of quality con-
trol in laptop manufacturing [1]–[4], as depicted in “Fig. 1”,
encompassing two primary stages [5]: first, the production
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of motherboards through Surface Mount Technology (SMT)
on printed circuit boards (PCBs), followed by functional
testing and repair of defective components; second, rigorous
quality control requirements for finished laptops, necessitating
functional testing and repair of defective units. This study
focuses on a typical laptop manufacturing factory, referred to
as ”Factory X,” one of the world’s largest facilities. Testing
of typical laptop motherboards at Factory X involves over 30
different test items, consuming considerable time, making it
impractical for the production line. Thus, Factory X adopts
a selective testing approach, wherein a subset of potentially
faulty functional modules is tested from the pool of over
30 test items. Due to data confidentiality, access is restricted
to internal technical staff at Factory X and a few academic
collaborators. Consequently, academic exploration of this issue
is limited, resulting in Factory X’s selective testing strategy
relying solely on internal engineers’ expertise, lacking theo-
retical underpinnings. This paper aims to provide theoretical
foundations for the selection of test items during functional
testing by accurately predicting the yield of each functional
module through the construction of a time series prediction
model.

In time series forecasting algorithms, traditional predictive
models include the Vector Autoregression (VAR) model, Au-
toregressive Moving Average (ARMA) model, Support Vector
Regression (SVR) model, among others. Although they find
application across various tasks [6]–[8], they are primarily
suitable for univariate time series and unable to handle the
complex nonlinear relationships within multivariate time series
data. With the development of deep learning, Deep Neural
Networks (DNNs) have been widely applied to time series
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Fig. 1. The process of functional testing in laptop manufacturing.

forecasting problems [9]–[11]. Compared to classical models,
predictive tasks can be more effectively accomplished through
DNN-based models. However, they still face challenges in
predicting the complex spatial characteristics prevalent in
industrial domains, and pure deep learning models suffer from
poor interpretability, making them unsuitable for industrial
applications.The prediction of module yields faces two main
challenges [12]: firstly, the time series of module yields exhibit
significant fluctuations, making it difficult to capture temporal
patterns of module failures; secondly, there exists coupling
between various functional modules, leading to mutual in-
fluence and interference among modules, complicating the
extraction of coupling features.To address these challenges, we
propose a hybrid model combining XGBoost and LSTM for
yield prediction. Specifically, the Long Short-Term Memory
(LSTM) [13] network captures time series information using
gate units, circumventing the vanishing gradient problem.
However, LSTM networks struggle to extract inter-sequence
correlation information and cannot output variable importance.
Therefore, we introduce the statistical model XGBoost [14]
to extract inter-sequence correlation features. Based on the
aforementioned analysis, this paper presents the XGB-LSTM
model to tackle the yield prediction problem of motherboard
functional modules.

The organization of this paper is as follows: Section 2
introduces the relevant knowledge of XGBoost and LSTM;
Section 3 elaborates on the proposed XGB-LSTM model;
Section 4 conducts experimental validation and result analysis
of the proposed model; Section 5 concludes the paper.

II. THEORETICAL BACKGROUND

A. LSTM

Long Short-Term Memory (LSTM) is a variant of Recur-
rent Neural Networks (RNNs) [15] designed specifically for
handling sequential data, capable of effectively capturing long-
term dependencies within sequences. Compared to traditional
RNNs, LSTM introduces a mechanism called gated units,
which include input gates, forget gates, and output gates,
controlling the flow of information to finely regulate sequen-
tial information.The specific structure of LSTM is shown in
“Fig. 2”.

In LSTM, the update process of the memory cell ct is
described by the following formula:

ct = ft ⊙ ct−1 + it ⊙ c̃t (1)
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Fig. 2. LSTM structure diagram.

where ct is the memory cell at time step t, ft is the output
of the forget gate, it is the output of the input gate, and c̃t is
the update value of the candidate memory cell. The calculation
of the forget gate and the input gate is as follows:

The calculation formula of the forget gate ft is:

ft = σ(Wf · [ht−1, xt] + bf ) (2)

The calculation formula of the input gate it is:

it = σ(Wi · [ht−1, xt] + bi) (3)

where Wf and Wi are the weight matrices of the forget
gate and the input gate, bf and bi are the corresponding bias
terms. Through the gated mechanisms above, LSTM networks
can selectively remember or forget past information when
processing sequential data, thereby better capturing long-term
dependencies within sequences, and improving the model’s
expressive power and generalization performance.

During training, LSTM networks utilize the backpropa-
gation through time (BPTT) algorithm [16] to update their
parameters and minimize the loss function. Given a sequence
of input-output pairs (x1, y1), (x2, y2), ..., (xT , yT ), where xt

represents the input at time step t and yt represents the
corresponding target output, the network’s parameters are
iteratively updated using gradient descent.

The loss function used for training LSTM networks typi-
cally involves comparing the predicted output ŷt at each time
step with the actual target output yt. The gradients of the loss
function with respect to the parameters are computed using
the chain rule of calculus and backpropagated through time.
This allows the gradients to be used to update the parameters
in the direction that minimizes the loss function.

By adjusting the parameters iteratively based on the gradi-
ents of the loss function, LSTM networks learn to better model
the sequential dependencies in the training data, ultimately
improving their performance on unseen data during inference.
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B. XGBoost

XGBoost (eXtreme Gradient Boosting) is an ensemble
learning algorithm based on Gradient Boosting Decision Trees
[17], aimed at solving regression and classification problems.
XGBoost sequentially trains a series of decision tree models
and gradually corrects their prediction errors to improve the
model’s performance. The specific structure of XGBoost is
shown in Figure 3.

……

 

 

Fig. 3. XGBoost structure diagram.

In XGBoost, each decision tree Ti can be represented as
a function fi(x), where x is the input feature vector. By
combining multiple decision trees, the prediction output of
the entire model can be obtained as follows:

ŷ =
n∑

i=1

fi(x) (4)

The key innovation of XGBoost lies in the definition and
optimization process of the objective function. Its objective
function consists of two parts: the loss function L and the
regularization term R, which can be represented as:

Obj =
n∑

i=1

L(yi, ŷi) +
n∑

i=1

Ω(fi) (5)

where yi is the true label value, ŷi is the model’s prediction
value, and n is the number of samples. The loss function L
measures the error between the predicted value and the true
value, while the regularization term R controls the complexity
of the model to prevent overfitting. The regularization term can
be represented by the following equation:

Ω(fi) = γ(T ) +
1

2
λ∥w∥22 (6)

where T is the number of leaf nodes, γ and λ are regularization
parameters, and w is the weight of the leaf nodes. The first
term γ(T ) controls the number of leaf nodes in the tree, and
the second term 1

2λ∥w∥
2
2 is the L2 regularization term, which

penalizes the size of the leaf node weights.
XGBoost optimizes the objective function using the gradient

boosting algorithm, which iteratively trains new decision trees
and updates parameters based on the negative gradient of the
objective function. In each iteration, a new decision tree is
fitted using gradient information to minimize the objective
function. Through this process, XGBoost can effectively learn

complex patterns in the data and achieve outstanding perfor-
mance in regression problems.

In summary, XGBoost is a powerful regression algorithm
that optimizes the objective function and trains decision tree
models using the gradient boosting algorithm, enabling effi-
cient and accurate predictions in regression tasks.

III. PROPOSED FORECASTING FRAMEWORK

Considering the multivariate, time-series, and nonlinear
characteristics of functional module testing data in laptop
motherboard manufacturing, this paper proposes an XGB-
LSTM model for predicting yield outcomes, as illustrated
in“Fig. 4”.

Test item 1 yield Test item 2 yield Test item n yield… …

Predicted yield

XGBoost

Feature n+1Test item 1 yield Test item 2 yield Test item n yield… …

LSTM

MLP

Fig. 4. Construction of XBG-LSTM model.

To address the multivariate nature of functional testing
data for motherboards, we have employed a hierarchical
deep learning model architecture. Initially, in the first layer,
an XGBoost model was trained to extract hidden features
from all variables. The XGBoost model is adept at capturing
complex relationships within multivariate data and generates
feature representations with high predictive power. Subse-
quently, leveraging the predictions from XGBoost as new
features, we combine them with the original features to serve
as inputs for the second layer of LSTM. In the second layer,
we utilize Long Short-Term Memory (LSTM) networks to
capture temporal information within the data. LSTM networks,
equipped with memory cells and gate units, effectively handle
time-series data and learn long-term dependencies. Moving to
the third layer, we perform a weighted fusion of the outputs
from XGBoost and LSTM, leveraging both their global and
temporal features. This weighted fusion strategy enhances the
predictive performance of the model, yielding more accurate
predictions. Finally, the XGB-LSTM model produces pre-
diction results and feature importance rankings. In industrial
production, feature importance rankings are crucial for guiding
production tasks as they aid production personnel in better
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understanding the predictive process of the model and adjust-
ing functional testing strategies to improve testing efficiency.
Therefore, the proposed XGB-LSTM model not only addresses
the complexity of industrial data but also mitigates the opacity
issues inherent in traditional neural network models, providing
essential decision support for industrial production processes.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Data selection and preprocessing

This study is based on six months of functional testing data
from a typical laptop motherboard at Factory X. We collected
and aggregated the historical yield data of various functional
modules of the motherboard model, which were obtained
from testing 500 motherboards and subjected to statistical
processing. To conform to the data format requirements of
the XGB-LSTM network, we preprocessed the data using
normalization and sliding window methods. Specifically, we
normalized the historical yield data to ensure they are within
the same numerical range. Then, we employed a sliding win-
dow approach to extract features from the historical yield data
of functional modules from the first 500 to 1000 motherboards,
with intervals of 50 motherboards, as inputs to the model. The
aim is to utilize these input data to predict the yield of each
functional module on the next motherboard.

B. Model training

When training the XGBoost model, grid search and cross-
validation were employed to obtain the optimal parameter
combination.

The parameters for XGBoost were set as follows: learn-
ing rate (Learning rate) = 0.1, number of estimators
(n estimators) = 50, maximum depth (max depth) = 3, min-
imum child weight (min child weight) = 1, gamma = 0,
subsample = 0.7, colsample by tree (colsample by tree) =
0.9, scale pos weight (scale pos weight) = 1, regularization
lambda (reg lambda) = 3, regularization alpha (reg alpha) =
0.

For the LSTM network constructed based on PyTorch, the
parameters were set as follows: number of neurons (Neurons)
= 128, epochs = 100, layers = 2,batch size (batch size) = 32.
Adam optimizer was chosen to adjust the learning rate.

For the MLP network constructed based on PyTorch, the
parameters were set as follows: number of neurons (Neurons)
= 128, epochs = 100, layers = 1,batch size (batch size) = 32.
Adam optimizer was chosen to adjust the learning rate.

C. Results

Due to commercial privacy constraints, we are unable to
disclose real data in this context. However, after validating
the yield prediction of thousands of motherboard functional
modules, we have demonstrated the effectiveness of the model.
“Fig. 5” illustrates the deployment of our algorithm within the
factory environment, further affirming its efficacy in predicting
the yield of typical motherboard functional modules at X
factory.

Fig. 5. Our yield prediction model has been implemented on the production
line at X factory.

To demonstrate the effectiveness of our approach, we uti-
lized a desensitized dataset derived from real-world data. From
this dataset, we selected the yield prediction results of a test
project for visualization analysis.

We select RMSE (Root Mean Squared Error), MAE (Mean
Absolute Error), and R2 (R-squared) as evaluation metrics for
model performance, defined as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (7)

MAE =
1

n

n∑
i=1

|yi − ŷi| (8)

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(9)

Where yi represents the true value, ŷi represents the pre-
dicted value, and ȳ represents the mean of the true values.
Smaller RMSE and MAE values and larger R2 values indicate
more accurate predictions.The performance evaluation results
of the predictive model are shown in in TABLE I. It is evident
from TABLE I that the model’s predicted values closely align
with observed data, outperforming baseline models across
various evaluation metrics.

TABLE I
PREDICTIVE ALGORITHM PERFORMANCE

Evaluation Metrics
MODEL RMSE MAE R2

XGBoost 0.001094638 0.000837593 0.838365928
LSTM 0.001327406 0.001025459 0.793284638

XGB-LSTM 0.000889765 0.000634917 0.876809934

“Fig. 6” provides a more intuitive visualization of the
accuracy of the model’s prediction results. From the graph,
it can be clearly observed that the XGB-LSTM model utilized
in this study accurately forecasts the yield of the motherboard
functional modules. The predicted values closely match the
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observed data, demonstrating the model’s strong predictive ca-
pability. This further validates the effectiveness and reliability
of the XGB-LSTM model for this task.
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Fig. 6. Yield Prediction Results for a Certain Test Project.

Additionally, our XGB-LSTM model is capable of gener-
ating a ranking map illustrating the importance of the top
10 features, as depicted in “Fig. 7”. To address commercial
privacy concerns, symbols are utilized to represent feature
names. The ranking of feature importance serves as a valuable
guide for subsequent production operations, playing an indis-
pensable role in industrial production. Through this ranking
map, we can better understand which features have the most
significant impact on production outcomes, thereby optimizing
the production process and improving product quality.

Fig. 7. Feature Importance.

V. CONCLUSION

This study provides significant insights into the selection of
testing projects during the notebook motherboard functional
testing phase at X Factory, with which we collaborate, and
offers theoretical support for decision-making in the factory

production process. In this paper, we adopt the XGB-LSTM
model to forecast the future yield of motherboard modules
based on the historical yield data of over 30 modules. XGBoost
excels at extracting hidden features from multivariate data,
while LSTM networks are proficient at capturing temporal
information. Consequently, the fusion of these two models
effectively addresses the challenges posed by multivariate
time series problems, thereby facilitating the prediction of
motherboard module yields. This, in turn, provides theoretical
underpinnings for the selection of testing projects during the
functional testing process.

REFERENCES

[1] C. Houdek and C. Design, “Inspection and testing methods for pcbs:
An overview,” Engineer/OwnerCaltronics Design & Assembly, 2016.

[2] M. Serban, Y. Vagapov, Z. Chen, R. Holme, and S. Lupin, “Universal
platform for pcb functional testing,” in 2014 International Conference
on Actual Problems of Electron Devices Engineering (APEDE), vol. 2,
pp. 402–409, IEEE, 2014.

[3] J. Ribeiro, R. Lima, T. Eckhardt, and S. Paiva, “Robotic process
automation and artificial intelligence in industry 4.0–a literature review,”
Procedia Computer Science, vol. 181, pp. 51–58, 2021.

[4] J.-S. Jwo, C.-S. Lin, and C.-H. Lee, “Smart technology–driven aspects
for human-in-the-loop smart manufacturing,” The International Journal
of Advanced Manufacturing Technology, vol. 114, pp. 1741–1752, 2021.

[5] D. Li, L. Wang, and Q. Huang, “A case study of sos-svr model for pcb
throughput estimation in smt production lines,” in 2019 International
Conference on Industrial Engineering and Systems Management (IESM),
pp. 1–6, IEEE, 2019.

[6] H. Khajavi and A. Rastgoo, “Improving the prediction of heating energy
consumed at residential buildings using a combination of support vector
regression and meta-heuristic algorithms,” Energy, vol. 272, p. 127069,
2023.

[7] D. Gefang, G. Koop, and A. Poon, “Forecasting using variational
bayesian inference in large vector autoregressions with hierarchical
shrinkage,” International Journal of Forecasting, vol. 39, no. 1, pp. 346–
363, 2023.

[8] B. Zhang, J. C. Chan, and J. L. Cross, “Stochastic volatility models with
arma innovations: An application to g7 inflation forecasts,” International
Journal of Forecasting, vol. 36, no. 4, pp. 1318–1328, 2020.

[9] L. Mohimont, A. Chemchem, F. Alin, M. Krajecki, and L. A. Steffenel,
“Convolutional neural networks and temporal cnns for covid-19 fore-
casting in france,” Applied Intelligence, vol. 51, no. 12, pp. 8784–8809,
2021.

[10] T. Swathi, N. Kasiviswanath, and A. A. Rao, “An optimal deep learning-
based lstm for stock price prediction using twitter sentiment analysis,”
Applied Intelligence, vol. 52, no. 12, pp. 13675–13688, 2022.

[11] S. Pan, S. C. Long, Y. Wang, and Y. Xie, “Nonlinear asset pricing in
chinese stock market: A deep learning approach,” International Review
of Financial Analysis, vol. 87, p. 102627, 2023.

[12] J. Yang, S. Li, Z. Wang, H. Dong, J. Wang, and S. Tang, “Using deep
learning to detect defects in manufacturing: a comprehensive survey and
current challenges,” Materials, vol. 13, no. 24, p. 5755, 2020.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[14] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, pp. 785–794, 2016.

[15] Y. Miao, M. Gowayyed, and F. Metze, “Eesen: End-to-end speech
recognition using deep rnn models and wfst-based decoding,” in 2015
IEEE workshop on automatic speech recognition and understanding
(ASRU), pp. 167–174, IEEE, 2015.

[16] P. J. Werbos, “Backpropagation through time: what it does and how to
do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[17] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-
Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,”
Advances in neural information processing systems, vol. 30, 2017.

1578
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 08,2024 at 10:40:30 UTC from IEEE Xplore.  Restrictions apply. 


